The goal of tidyquandl
is to be an easy-to-use and tidy interface to the Quandl API for financial data.
Core features:
paginate = TRUE
in Quandl
)readr::read_csv()
for speed and type inferenceThis is not the only way to interact with Quandl from R; Quandl themselves maintain a Quandl
R package which covers a wider set of uses than tidyquandl
(like the Timeseries API), but supports none of the above features. An earlier version of this package wrapped the Quandl one, but as of v0.1.2 the underlying code has been rewritten from scratch.
You can install the release and development versions from GitHub wih the devtools
package:
# install.packages("devtools")
# latest release
devtools::install_github("claytonjy/tidyquandl@*release")
# latest development version
devtools::install_github("claytonjy/tidyquandl")
I recommend using the release version in general, but be sure to install the development version when filing bugs and pull requests.
Before doing anything with the Quandl API, you’ll need an account; you can register for free at Quandl, and all examples use free datasets available to all registered users.
Then you need to obtain your API key (a string) from your account settings. Storing this in an environment variable named QUANDL_API_KEY
is easiest (e.g. via .Renviron
), though isn’t strictly necessary.
# ~/.Renviron
QUANDL_API_KEY=my-ap1k3y
Then we read that in via quandl_key_set()
.
library(tidyquandl)
quandl_key_set() # can also pass key to this as argument
Now we can call quandl_datatable()
to interact with the Tables API. Here we use the Wiki Prices database to get one day of prices on Apple and Microsoft:
quandl_datatable("WIKI/PRICES", ticker = c("AAPL", "MSFT"), date = "2018-01-02")
#> # A tibble: 2 x 14
#> ticker date open high low close volume `ex-dividend`
#> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 AAPL 2018-01-02 170. 172. 169. 172. 25048048 0
#> 2 MSFT 2018-01-02 86.1 86.3 85.5 86.0 21993101 0
#> # ... with 6 more variables: split_ratio <dbl>, adj_open <dbl>,
#> # adj_high <dbl>, adj_low <dbl>, adj_close <dbl>, adj_volume <dbl>
Unlike Quandl::Quandl.datatable
, if an error is received (HTTP response 400+) the query will be retried automatically up to three times. It can also accept an unlimited number of tickers
: behind the scenes, multiple queries will be made to avoid errors from passing Quandl too many parameters.
You can pass in any of the arguments you’re used to passing into Quandl::Quandl.datatable
via the ...
args. Here we get only the closing prices for Apple over the span of two weeks.
quandl_datatable(
"WIKI/PRICES",
ticker = "AAPL",
date.gte = "2018-01-01", date.lt = "2018-01-15",
qopts.columns = c("ticker", "date", "close")
)
#> # A tibble: 9 x 3
#> ticker date close
#> <chr> <date> <dbl>
#> 1 AAPL 2018-01-02 172.
#> 2 AAPL 2018-01-03 172.
#> 3 AAPL 2018-01-04 173.
#> 4 AAPL 2018-01-05 175
#> 5 AAPL 2018-01-08 174.
#> 6 AAPL 2018-01-09 174.
#> 7 AAPL 2018-01-10 174.
#> 8 AAPL 2018-01-11 175.
#> 9 AAPL 2018-01-12 177.
You can also use tidyquandl
to fetch metadata about a table.
quandl_datatable_meta("WIKI/PRICES")
#> $vendor_code
#> [1] "WIKI"
#>
#> $datatable_code
#> [1] "PRICES"
#>
#> $name
#> [1] "Quandl End of Day Stocks Info"
#>
#> $description
#> NULL
#>
#> $columns
#> name type
#> 1 ticker String
#> 2 date Date
#> 3 open BigDecimal(34,12)
#> 4 high BigDecimal(34,12)
#> 5 low BigDecimal(34,12)
#> 6 close BigDecimal(34,12)
#> 7 volume BigDecimal(37,15)
#> 8 ex-dividend BigDecimal(42,20)
#> 9 split_ratio double
#> 10 adj_open BigDecimal(50,28)
#> 11 adj_high BigDecimal(50,28)
#> 12 adj_low BigDecimal(50,28)
#> 13 adj_close BigDecimal(50,28)
#> 14 adj_volume double
#>
#> $filters
#> [1] "ticker" "date"
#>
#> $primary_key
#> [1] "ticker" "date"
#>
#> $premium
#> NULL
#>
#> $status
#> $status$refreshed_at
#> [1] "2018-03-27T23:54:20.000Z"
#>
#> $status$status
#> [1] "ON TIME"
#>
#> $status$expected_at
#> [1] "*"
#>
#> $status$update_frequency
#> [1] "CONTINUOUS"
Unlike quandl_datatable()
this returns a list rather than a tibble. This can also be used on any table, including premium tables you haven’t paid for, which can be helpful to evaluate their usefullness beyond what you see in the documentation.
The next big changes will be to allow for more readr
-like control of types (issues #22, #27) and to improve documentation by making a pkgdown
site (#9) and a vignette comparing this to the Quandl
package more directly (#28).
Your contributions are welcome! Issues, typo fixes, new functions, anything. See .github/CONTRIBUTING.md
for more information.
To test & check you’ll need to store your key in the QUANDL_API_KEY
variable. I recommend creating an .Renviron
file in this directory.
Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.